XCS with Stack-Based Genetic Programming

نویسنده

  • Pier Luca Lanzi
چکیده

We present an extension of the learning classifier system XCS in which classifier conditions are represented by RPN expressions and stack-based Genetic Programming is used to recombine and mutate classifiers. In contrast with other extensions of XCS involving tree-based Genetic Programming, the representation we apply here produces conditions that are linear programs, interpreted by a virtual stack machine (similar to a pushdown automaton), and recombined through standard genetic operators. We test the version of XCS extended with stack-based conditions on a set of problems of different complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modifying XCS for Size-Constrained Systems

Extended Classifier Systems, or XCS, is a soft-computing approach to machine learning in rule-based systems. While XCS has been shown effective in learning accurate, compact and complete mappings of an environment’s payoff landscape, it can require significant resources to do so. This paper presents four modifications that allow XCS to achieve high performance even in highly size-constrained po...

متن کامل

Can Evolution Strategies Improve Learning Guidance in XCS? Design and Comparison with Genetic Algorithms based XCS

XCS is a complex machine learning technique that combines credit apportionment techniques for rule evaluation with genetic algorithms for rule discovery to evolve a distributed set of sub-solutions online. Recent research on XCS has mainly focused on achieving a better understanding of the reinforcement component, yielding several improvements to the architecture. Nonetheless, studies on the ru...

متن کامل

Classifier Fitness Based on Accuracy Stewart

In many classifier systems, the classifier strength parameter serves as a predictor of future payoff and as the classifier's fitness for the genetic algorithm. We investigate a classifier system, XCS, in which each classifier maintains a prediction of expected payoff, but the classifier's fitness is given by a measure of the prediction's accuracy. T h e system executes the genetic algorithm in ...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

To Bound Search Space and Boost Performance of Learning Classifier Systems: a Rough Set Approach

Learning classifier system is a machine learning technique which combines genetic algorithm with the power of the reinforcement learning paradigm. This rule based system has been inspired by the general principle of Darwinian evolution and cognitive learning. XCS, eXtended Classifier System, is currently considered as state-of-the-art learning classifier systems due to its effectiveness in data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006